Welche Vorteile hat die Oszilloskopmessung?
InhaltsverzeichnisDie Oszilloskop-Messung[Bearbeiten]Das bestmögliche Zeit- / Signalverhalten ist das alleinige Kriterium für eine korrekte Wiedergabe. Die Untrennbarkeit von Zeit und Amplitude kennzeichnet allein das Hörbare. Damit kann letztlich auch nur dies das Kriterium für die Beurteilung von Lautsprechern sein. Die Visualisierung der Schallwellen erfolgt durch das Oszilloskop. Ein Beispiel: Messdiagramme sind dafür da, dem kundigen Experten Hinweise auf Übertragungseigenschaften zu geben und dienen als Werkzeug für die Suche nach Fehlern und deren Ursachen. Eine Anleitung dafür, wie man Fehler vermeidet und wie die Rekonstruktion des Ursprungssignals zu schaffen ist, ist darin nicht enthalten. Nur Oszilloskop-Darstellungen zeigen die komplexe Schwingungsstruktur, die Schalldruckschwankungen, die auch unser Hörorgan anregen. Gleichwohl findet sich ein Phänomen in der Regel in jeder Teilansicht bzw. auf spezifische Art in jeder Messung wieder. Ein Beispiel. Die Membranresonanz eines Mitteltöners sehen wir:
Es ist und bleibt jedoch die Membranresonanz eines Mitteltöners. Wenn man sich die Schallstuktur eines Musikstücks auf dem Oszilloskop ansieht, kann man erkennen, dass die Musik ganz wesentlich eine Folge von Transienten ist. Das markante an den Transienten ist, dass sie wie Hochhäuser aus dem Klanggemisch hervor ragen. Sie sind die um ein vielfaches lauteren Schallstrukturen, eben genau die Peaks, welche die Verdeckungseffekte in Bezug auf nachfolgende Schallwellen bewirken. Myro macht seit sehr langer Zeit Schallaufnahmen mit dem Oszilloskop und sucht bzw. entwickelt Schallwellenformen, die geeignet sind, bei möglichst eindeutiger Aussagekraft einen Lautsprecher auf dessen Wandlerfähigkeit hin zu überprüfen. Beim Vorschalten verschiedener Filter sieht man bei gleichbleibendem zeitlichen Ursprung z.B. die der Filtersteilheit entsprechende Änderung der zeitlichen Ausdehnung der ersten Halbwelle und die Amplitudenänderungen. Genau genommen kann ein Chassis nur bei exakt einer einzigen Frequenz die erste Halbwelle mit der richtigen Frequenz wiedergeben! Dies ist ganz einfach mit Oszilloskopmessungen nachzuvollziehen. Zusammengefasst: |
Die Sprungantwort[Bearbeiten]Eine Sprungantwort erhält man nur als Antwort auf einen Sprung. Nur ein Sprung regt einen Wandler so an wie ein Sprung. Und nur wenn ein Wandler mit einem Sprung angeregt wurde, kann er eine Sprungantwort geben. Sobald man eine Anregung verwendet, die den Wandler in einen eingeschwungenen Zustand versetzt, enthält die daraus ermittelte "rechnerische Sprungantwort" nicht die identische Information. Aus Einschwingvorgängen periodisch wiederkehrende Signale zu machen, führt in die falsche Richtung. Einschwingvorgänge, wie alles in der Musik, wiederholen sich nicht in identischer Form und eingeschwungene Zustände sind in der Musik nur elektronisch erzeugt möglich. Musik ist grundsätzlich eine Folge wechselnder Einschwingvorgänge. Eingeschwungene Zustände kommen nur näherungsweise und eher leise vor. |
Kann die Fourier-Transformation (FFT) die Oszilloskopmessung ersetzen?[Bearbeiten]Es wird oft argumentiert, dass man die direkte Messung der Sprungantwort auch durch die mathematische Simulation mittels Fourier-Transformation ersetzen könne. Auf der einen Seite haben wir bei der Sprungmessung den realen Stimulus "Spannungssprung" von Null zur vorgegebenen Gleichspannung. Dieser Stimulus - und nur dieser Stimulus - regt die Chassis an. Auf der anderen Seite haben wir das Modell "Fourieranalyse", eine theoretische Methode, mit der unter bestimmten Modellannahmen ermittelt wird, aus welchen Schallwellen man den realen Stimulus bilden könnte, wenn man sie in Betrag und Zeit kumulieren würde. Das Ergebnis der Fourieranalyse ist ein theoretisches Konstrukt, kein realer Stimulus, regt daher auch kein Chassis an. Wenn man aus der Sprungantwort durch Differenzieren die Pulsantwort berechnet (andersherum ist die Sprungantwort das Integral der Pulsantwort über die Zeit), dann kann man auch die Pulsantwort mit einem Sprung oder einem Rechtecksignal falten. Insofern lassen sich bei einem LTI-System aus der Pulsantwort die Ergebnisse berechnen, egal ob es nun ein Sprung, ein Rechtecksignal, ein Halbsinus, ein Cosinusburst usw. sind, mit dem der Puls gefaltet wird. Das ist eindeutig, aber beschränkt gültig auf lineare und zeitinvariante Systeme. Die Grenzen der Theorie Möglichkeiten und Grenzen der Fourier-Transformation Der Stimulus kennt nur einen (bzw. beim Rechteck zwei) Spannungswechsel, nämlich den Spannungssprung am Anfang und den Spannungsabfall am Ende. Dazwischen liegt Gleichspannung! Der Gleichspannungszustand ist aber kein Stimulus für einen elektrodynamischen Wandler, nur der Spannungswechsel kann dies sein. |
<zurück: Myroklopädie>
<zurück: Myro>